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quite good regions but others were much less clear. 
We show in Fig. 1 one of the better portions of a 
FRODO map (Jones, 1985) for RNA from our final 
phases, with the structure superimposed. We con- 
clude that the results for RNA are rather marginal; 
to progress from the starting point we provide to a 
complete elucidation of the structure would probably 
be possible, but would certainly require prior 
stereochemical information and much experience in 
protein crystallography. 

Concluding remarks 
We are encouraged by the fact that for a structure of 
the size of RNA the automatic procedures we have 
so far devised can give results at the margin of being 
useful. One thing we have confirmed, although it is 
a well known effect, is that the accuracy of the data 
is very critical in work of this kind. When we repeat 
analyses using calculated data from the known struc- 
ture then there results a remarkable improvement in 
phase estimates. We are hoping to strengthen our 
analytical methods but we hope that experimentalists 
will also be able to improve the quality of the data 
they provide. 
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Abstract 

An analytical method has been developed by which 
phase estimates may be uniquely determined from 
one-wavelength anomalous-scattering data; the 
method as described can be applied to structures 
containing one type of anomalous scatterer. The 
method has been tested on two structures. The first 
is an Hg derivative of a small protein, avian pancreatic 
polypeptide (App), crystallizing in space group C2 

with one molecule of 36 amino-acid residues in the 
asymmetric unit. The second is a Pt derivative of 
ribonuclease Sa (RNA), crystallizing in space group 
P212121 with two molecules of 96 amino-acid residues 
in the asymmetric unit. The phases for App give an 
electron density map which can easily be interpreted 
in terms of a model. For RNA the map is less clear 
but has strong similarities with the true map and could 
probably be interpreted. If anomalous scatterers are 
centrosymmetrically arranged then the analysis shows 
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that there is a simple alternative process for calculat- 
ing a map, called a Bp map, which directly shows a 
structural image. 

Introduction 

It is usually assumed that one-wavelength anomalous- 
scattering data can only give phases with an ambiguity 
and, indeed, much effort has been put into finding 
techniques for resolving the ambiguity (e.g. Kartha, 
1961; Fan Hai-fu, Han Fu-son, Qian Jin-zi & Yao 
Jia-xing, 1984). Karle (1989) has demonstrated the 
use of exact linear equations for one-wavelength 
anomalous scattering, the effectiveness of which was 
illustrated with calculated data having a superim- 
posed random error. However, it was much earlier 
shown by Okaya, Saito & Pepinsky (1955), and more 
recently demonstrated by Hao Quan & Woolfson 
(1989), that the ambiguity is not really present as long 
as the locations of the anomalous scatterers are 
known. The calculation of a map, the Ps function, 
which requires only knowledge of differences between 
anomalous intensities, [F(h)l z -  l F(K)I 2, shows vectors 
from each anomalous scatterer to each non- 
anomalous scatterer, and also vectors between 
anomalous scatterers of different types. If the posi- 
tions of the anomalous scatterers are known then a 
superposition function will, in principle, show an 
image of the complete structure. However, the Ps map 
is antisymmetric and for each positive peak there is 
a negative peak in the opposite direction. Cancella- 
tion of positive and negative density destroys infor- 
mation and degrades the resultant image. 

It occurred to us that it might be possible to find 
an analytical alternative to the P~ function approach 
and this development is described here. 

We now define 
N 

F°(h) = Y~ f exp (27rib. r,) 
i = 1  

= A°(h)+ iB°(h) 

where 

(4) 

N 

A°(h) = ~ f c o s ( 2 7 r h . r , ) +  E 
i = l  i = r a + l  

and 

f cos (2zrh. ri) 

(5) 

r a  N 

B°(h) = E f s in(2~rh.r , )+ ~ f sin(27rh.r,).  
i-----1 i = m + l  

(6) 

We shall assume that all the anomalous scatterers are 
of the same kind, which means that there are no 
non-zero terms in (3) relating to interactions between 
anomalous scatterers. In such a circumstance (3) may 
be rewritten in the form 

N 

IF(h)I2-1F(K)I2=4 Z fj' E f, sin [27rh. ( r , - r j ) ] .  
j = m + l  i = 1  

(71 

When all the anomalous scatterers are equal the ratio 
- -  /t g - f / f i  is independent of site occupancy or thermal 

motion. This enables us to write 

m 

A°(h) = E fcos(27rh.r i )+ga(h)  (8) 
i = l  

and 

Analysis 

We shall consider the case of a structure containing 
N atoms in the unit cell with N - m  of them being 
anomalous scatterers. We shall take the scattering 
factors as fj + if~' so that the real part includes that 
from anomalous scattering where it occurs. We may 
now write structure factors as 

and 

N 

F(h)= ~ (f+if~)exp(27rih.r,) (1) 
i = 1  

N 

F(h) = Y', ( f  + if~) exp (-27rih. r,). (2) 
i = 1  

Following Okaya, Saito & Pepinsky (1955) we find 
N N 

If(h)12-1F(h)l 2=2 E E ( f j ' f - f ' [ £ )  
i = 1  j = l  

x sin [27rh. ( r / - r j ) ] .  (3) 

where 

and 

Since 

B°(h) = ~ fs in(2,n 'h.r , )+gb(h)  (9) 
i = 1  

N 

a(h)=  E f," cos (27rh.r,) (10) 
i = m + l  

N 

b(h)= ~ f~'sin (27rh.r,). (11) 
i = m + l  

f sin [2zrh. ( r , - r j ) ]  
i = 1  

= cos (27rh. rj) ~ f sin (2zrh. ri) 
i = l  

m 

- s in  (27rh. rj) ~ fi cos (27rh. ri) 
i = 1  

(12) 
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we have 

N 

4 Y, fj '  ~ f~ sin [27rh. ( r i - r f l ]  
j = m + l  i=1 

N 

= 4  Y', f~'cos(27rh.rj)[B°(h)-gb(h)] 
j= rn+ l  

N 

- 4  ~ f~' sin (27rh.rj)[A°(h)-ga(h)] 
j = m + l  

= 4{ a (h)[ B°(h) - gb(h) ] - b(h)[ A°(h) - ga (h) ]} 

= 4[ a(h) B°(h) - b(h)A°(h)]. (13) 

Table 1. Detailed molecular information for App and 
RNA crystals 

A p p  R N A  

Space group C2 P21212 I 
Number of molecules/asymmetric unit 1 2 
Number of amino-acid residues/molecule 36 96 
Type of  anomalous scatterers (a.s.) Hg Pt 
Number of a.s. sites/unit cell 4 20 
Resolution of  data (,~) 2.04 2-50 
Number of independent reflexions 2109 7008 
Cell dimensions 

a (~)  34.18 64-90 
b (,~) 32-92 78.32 
c (/~) 28-44 38-79 

(o) 105.3 

Thus (7) can be written as 

I f(h)12- I F(fi)l 2 =4[  a ( h ) n ° ( h ) -  b(h)A°(h)] (14) 

o r  

If(h)12-1F(fi)l 2 
sin [ ¢ ( h ) -  e(h)] =4lFO(h)l[a(h)2+ b(h):] , / :  (15) 

where tan[~p(h)]=B°(h)/A°(h) and t a n [ e ( h ) ] =  
b(h)/a(h). 

The angle ~p(h) is the phase of the structure factor 
of the protein with scattering factors equal to the total 
real part of the anomalous-scattering factor for the 
anomalous scatterers. Equation (15) gives the sine of 
the difference of angle ~p and the phase of the heavy- 
atom substructure, e. Since we only find the sine of 
the angle we are still left with a phase ambiguity. 

We now return to the Ps function given by Okaya, 
Saito & Pepinsky (1955). This is 

Ps(u)=y~[lF(h)12-lF(~)12]sin(2~rh.u). (16) 
h 

It was shown by Hao Quan & Woolfson (1989) that 
the Ps function has positive peaks of weights 4fj'f~ 
from each anomalous scatterer to each non- 
anomalous scatterer and negative peaks of the same 
weight in the reverse direction. If the cancellation of 
positive and negative peaks is not too severe then the 
function IP~(u)l will have peaks of weight 4fj'f~ from 
each anomalous scatterer to each non-anomalous 
scatterer and in the reverse direction as well. The 
Fourier transform of IP~(u)l gives 

x(h) = V- '  ~ IPs(u)l cos (2-rrh. u) 

N 

= 4  ~, fj' ~ fi c o s [ 2 7 r h . ( r i - r j ) ]  
j = m + l  i=1 

-- 4[ a(h) A°(h) + b(h) B°(h) ] 

- 4 g [  a(h) 2 + b (h)2]. (17) 

This gives 

cos [ ~ ( h ) -  ~(h)] = 
x(h) + 4g[ a(h) 2 + b(h) 2] 

41F°(h)l[ a(h) 2 + b ( h ) 2 ]  1/2" 
(18) 

Combining equations (15) and (18) we find 

IF(h)12- IF(K)I 2 
t a n [ ~ ( h ) - e ( h ) ]  x(h)+4g[a(h)2+b(h)2 ]. (19) 

From this equation the phases q~ (h) can be determined 
unambiguously since sin [~(h) - e(h)] and 
cos [~p(h) - e(h)] must have the sign of the numerator 
and denominator of (19) respectively. 

Test procedure 

Equation (19) was tested with two known proteins - a 
small one, an Hg derivative of avian pancreatic poly- 
peptide (App) (Glover, Moss, Tickle, Pitts, Haneef, 
Wood & Blundell, 1985) and a much larger one, a Pt 
derivative of ribonuclease Sa (RNA) (Dodson, 
Sevcik, Dodson & Zelinka, 1987). Details of the 
two crystals are given in Table 1. From anomalous 
differences, 

AF(h) = IF(h) l -  IF(h)l, (20) 

as input for the direct-methods program MULTAN 
the four Hg sites in App and the twenty Pt sites, with 
occupancies from 0-18 to 0.42, in RNA were found 
(Dodson et aL, 1987). These positions could then be 
used to find a(h), b(h) and e(h). 

The diffraction data employed were provided in 
the form of F(h)=[IF(h)I+IF(N)I]/2 and AF(h), so 
(19) was taken in the form 

2F(h),aF(h) 
t an [~p(h) -e (h ) ]  x(h)+4g[a(h)2+b(h)2 ]. (21) 

In order to compensate for possible scaling errors in 
the data and approximations in the ana lys i s - fo r  
example, the assumption that no information is lost 
in the ]Psi m a p - w e  took steps to scale the top and 
bottom of the right-hand side of (21). These were 

(i) Normal izeF(h)  to an absolute scale by Wilson 
statistics. 

(ii) Normalize AF(h) by Wilson statistics taking 
into account only the contributions of the anomalous 
scatterers. 
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Table 2. Phase errors for App given by the analytical 
method, arranged in descending order of a lFol 

Fo: observed  s t ructure  fac tor  
a :  figure o f  meri t  f rom equat ion  (22) 

NR:  n u m b e r  o f  reflexions in the g roup  
alFol: m i n i m u m  ~lFol in the g roup  

W M E :  a[Fo[-weighted m e a n  phase  error  
ME:  m e a n  phase  error  

N R  ~lFol W M E  (°) M E  (o) 

200 2574 34.92 35.31 
400 1579 33.01 31.93 
600 1120 33.15 32.64 
800 839 33.51 33.63 

1000 629 33.80 34.47 
1200 478 33.65 33.77 
1400 336 33.78 34.28 
1600 220 34.08 35.72 
1800 121 34"33 37"42 
2000 42 34"54 40"29 
2109 0 34.57 41"80 

Table 3. Phase errors for RNA given by the analytical 
method, arranged in descending order of a lFol 

Fo: obse rved  s t ructure  fac tor  
a :  figure o f  meri t  f rom (22) 

NR:  n u m b e r  o f  reflexions in the g roup  
alEol: m i n i m u m  ~lFol in the g roup  

W M E :  alFol-weighted m e a n  phase  error  
ME:  m e a n  phase  er ror  

N R  ~IFol W M E  (°) Me (°) 

500 10 748 43.64 44.62 
1000 6847 45.57 47.24 
1500 4852 47-33 50.06 
2000 3612 49.00 53.10 
2500 2810 50.52 55.80 
3000 2261 51"51 57-98 
3500 1800 52"47 60"08 
4000 1409 53"33 62-23 
4500 1084 53"96 63"93 
5000 816 54"50 65"69 
5500 567 54-91 67"34 
6000 346 55-17 68"74 
6500 162 55"36 70"57 
7008 0 55"42 72-22 

(iii) Scale x(h)  to make the mean squared values 
of the top and bottom equal, on the assumption that 
the distribution of values of ¢ (h) - e (h) is random so 
that sinE [~p(h)- e(h)] is equal to cos2 [~p(h)-e(h)] .  

From (19) we can also derive a figure of merit for 
the phase estimate based on the magnitudes of the 
numerator and denominator.  This is 

a (h)  = ([I F(h)[ 2 -  [ F(h)[2] 2 + {x(h) 

+4g[a(h)2+b(h)2 ] }2)  '/2 (22) 

Test results 

Phases ~p(h) derived from (21) have been compared 
with the true phases calculated from the known struc- 
tures and a digest of the phase errors is given in 
Tables 2 and 3 for App and RNA respectively. The 
reflexions have been taken in the order of a(h)[Fo(h)[ 

where [Fo(h)[ is the observed structure amplitude. We 
have also calculated conventional correlation 
coefficients between electron density maps calculated 
with the ~p (h)'s, namely A maps, and the true phases. 
A weighting scheme, similar to that proposed by Sim 
(1960) was used in calculating the map. Each Fourier 
term had a weight 

11[ kc~ (h)[ Fo (h)[] 

Io[k~(h)[Fo(h)[]' 

where 11 and Io are modified Bessel functions and k 
is a scale factor chosen arbitrarily to give an equal 
number of reflexions with weights greater than 0.5 
and less than 0.5. 

In the case of App the mean phase error for all the 
2109 reflexions within the 2.04 ]k sphere of observa- 
tion was 41.80 ° but with a[Fo[ weighting this was 
reduced to 34.57 °. The A map resembled the true 
map fairly closely with a correlation coefficient of 
0.61. In Fig. 1 we compare a part of the three- 
dimensional map and the true model plotted by 
FRODO (Jones, 1985). There is little doubt that this 
map would lead to a complete structure determi- 
nation. 

For RNA, since there are 1746 independent atomic 
positions to be determined and the twenty anomalous 
scatterers had various occupancies, the method was 
faced with a real challenge. Although the mean phase 
error for the 7008 reflexions within 2.5/~ resolution 
was 72.22 ° the a[Fo[ weighted mean phase error was 
only 55.42 ° showing that the phase error was strongly 
correlated with the weights used. The weighted map 
has a correlation coefficient of 0.42 when compared 
with a true density map and a portion of it is shown 
in Fig. 2; the agreement is far from perfect but the 
chacteristics of the true model can be seen. However, 

APP A-map 

N 

• ' \ ! 

Fig. 1. Part o f  a FRODO m a p  for  A p p  with the t rue mode l  
supe r imposed .  
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there is no doubt that prior stereochemical informa- 
tion would be required to interpret this map success- 
fully. 

A special case 

Let F denote Fourier transformation. Then from (4) 
we have 

p(r)=F[A°(h)+ iB°(h)] (23) 

where p(r) differs slightly from the true electron 
density because of the contribution of the real part 
of anomalous scattering in the equation. 

In similar fashion we can write 

p ( - r )  = F[A°(h) - iB°(h)]. (24) 

Subtracting (24) from (23) gives 

g-[iB°(h)]=[p(r)-p(-r)]/2. (25) 

The positive regions of F[iB°(h)], which we call a Bp 
map, contain all the information about the structure 
except for those arrangements where p(r) overlaps 
p ( - r ) ,  i.e. centrosymmetric with respect to the chosen 
origin. 

In general we cannot obtain a Bp map from one- 
wavelength anomalous-scattering data. However, if 
the anomalous scatterers happen to be in a centrosym- 
metric arrangement then b(h)= 0 and from (14) we 
find 

B°(h)=[lF(h)]2-[F(h)12]/4a(h). (26) 

Table 4. Errors of App Bp map arranged in descending 
order of IFoFcl 

observed structure factor 
calculated structure factor from Bp map 
number of reflexions in the group 
minimum IFoFA in the group 
[FoFcl-weighted mean phase error 

Fo: 
F~: 

NR:  

IFoFcl: 
W M E :  

ME:  mean  phase error  

N R  IFoFcl W M E  (°) M E  (°) 

200 3947 35.83 34.31 
400 2675 35.94 35.26 
600 2020 36.83 37.15 
800 1596 36.86 37.08 

1000 1290 36.75 36.80 
1200 1019 36.56 36.31 
1400 805 36.73 36.78 
1600 589 36.99 37.61 
1800 364 37.26 38.71 
2000 163 37.42 39.68 
2109 0 37.49 40-81 

density to zero gave the map Bp which is dominated 
by density representing the true structure. With 
density added at the Hg sites the Be map was com- 
pared with the true density for the Hg derivative; the 
correlation coefficient was 0.62. The phase com- 
parisons are shown in Table 4. There is a mean phase 
error of 40.81 o but this reduces to 37.49 ° when weights 
]FoFc[ are taken, where Fc is the Fourier coefficient 
of the Bp map. For App the Bp map has a similar 
quality to that obtained by the procedure involving 
the use of (21) but the process is much simpler to 
apply. 

In this case the Bp map can be calculated directly. 
The Hg atoms in App form a centrosymmetric 
arrangement and hence, by means of (26), we were 
able to calculate F-~[iB°(h)]. Setting the negative 

RNA A-map 

Fig. 2. Part o f  a FRODO map for R N A  with the true model  
super imposed.  

Concluding remarks 

In this paper we have presented two methods for the 
ab initio determination of phases in protein crystal- 
lography using one-wavelength anomalous-scattering 
data. The analytical method can be used for general 
cases but where the anomalous scatterers have a cen- 
trosymmetric arrangement the much simpler Bp map 
method may be used. Unlike the Ps-function method 
(Hao Quan & Woolfson, 1989) neither of these 
methods requires a superposition procedure to be 
used, which avoids density cancellation and a residue 
of ghost peaks. We are hoping that further investiga- 
tions will greatly improve the quality of the informa- 
tion acquired by methods of this type. 
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the Science and Engineering Research Council for 
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Academy of Sciences and the Royal Society for sup- 
porting collaboration between our laboratories in 
Beijing and York. One of us (HQ) must also express 
his appreciation to the Royal Society for the award 
of a Royal Fellowship. 
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Abstract 

An ordered partition P of a point group G is construc- 
ted in left cosets H...~ = . . .  B/3A~H related to a sub- 
group H by means of selected genitors A, B , . . . :  

P = {H.../3,~ I a = 1 to a, fl = 1 to b, . . .} ,  

ab. . .=IGI/IHI. 

This partition P spans a principal induced representa- 
tion (PIR) R(H:  G) of G. Then a basis L of this PIR 
is built: 

L={V...kjlJ = 1 to a, k =  1 to b , . . .}  

with 

b 
V...kj . . . .  Y. ~ exp[2iTr(.. .+kfl/b+ja/a)]H...o,~. 

13=1 t~=l 

In many cases L is a complete reduction basis (CRB) 
of R ( H  : G) for which all matrices are fully reduced. 
The possibility of obtaining such a CRB depends on 
the algebraic structure of the group G, on the con- 
sidered subgroup H and on the choice of genitors 
A, B, . . . .  Methods are proposed using subgroup 
chain properties, invariant inductor subgroup proper- 
ties, direct product properties etc. These methods 
have been applied to crystallographic point groups. 
Complete tables of CRBs are recorded for all PIRs 
of all crystallographic point groups except for  a few 
PIRs of the point groups 432, 43m and m3m. 

Introduction 

In practice the reduction of a reducible representation 
F of a group is not an easy task. The purpose is not 
only to determine the irreducible representations (IR) 
which are the components of F but also to find a 

0108-7673/90/080664-08503.00 

basis of the representation vector space for which the 
matrices of F are all in a reduced form. When each 
irreducible component appears once only, the projec- 
tion operators are usually used (Schonland, 1971; 
Bradley & Cracknell, 1972; Labarre, 1978); they lead 
to the required basis by a more or less laborious task. 
'The problem is more complicated when the same IR 
appears several times in F . . . .  There is no general 
m e t h o d . . ,  one proceeds as best as one can, guiding 
oneself according to the form of the matrices of F '  
(Schonland, 1971).* In the case of induced rep- 
resentations, reduction methods have been proposed 
by Bradley & Cracknell (1972) which applied to rep- 
resentations induced by invariant subgroups. 

In the present paper we will show that it is often 
possible in the case of a principal induced representa- 
tion (PIR) of a point group G, to build a reduced 
basis; it is not necessary to use the group algebra 
of G but a vector subspace O, the dimension of which 
is smaller than that of M; t  the vectors of this subspace 
are the cosets of the partition of G relating to the 
subgroup H inducing the PIR of G. It is not necessary 
for H to be invariant in G; no matrix diagonalization 
is needed in the reduction process; only the knowl- 
edge of the group multiplication table is required. An 
application of the method is to be able to propose 
basis vectors and reduced matrices for each IR of G. 

I. Building the ordered partition 
The PIR properties of a group are well known 
(Lomont, 1959; Murnagham, 1963; Kirillov, 1976). 

* After the French edition. 
t Except in the event of an inductor subgroup reduced to the 

identity element. In this case O is identical to M. 
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